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Abstract 
In this paper an attempt to build a model of a network of masses connected by springs is 
taken, and to create a change in this network, which would be an equivalent to the 
charges located in space. We study here the interdependence of energy and distance 
between charges, and we try to find such a solution to the model, which would be most 
appropriate to describe the electrostatic field in the real world. 

 
1.1 Introduction 

Electrostatic interaction of charges seems perfectly known. We know that the force acting 
on two charged objects is directly proportional to the product of charges and inversely 
proportional to the square of distance between them: 

2~
r
QqF  (1) 

Because force is a distance derivative of potential energy, 

dr
dVF =  (2) 

we can say that the energy, exact to the integration constant, equals: 

∫ dr
r
QqV 2~  (3) 

r
V 1~  (4) 

The interdependence between force, energy and interaction is well known and proved by 
experiment. 

But here we arrive at a question about the Coulomb potential in 1D and 2D cases. We are 
unable to check it experimentally, because we live in a 3-dimensional space. So how can we 
verify our theoretical assumptions in these cases? This paper is an attempt to build a model of 
this interaction and to study its behaviour according to the number of dimensions. If we 
manage to build a model, whose behaviour in 3D space corresponds to (4), there will be a 
hypothesis that it is also true in 1D and 2D spaces.  

 
1.2 Expected behaviour of the model 

We know that in the 3D case force is inversely proportional to the square of distance. We 
also know that the total stream of field is constant. Thus we get: 

2
11 4~ rF Πσ  (5) 
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After multiplying the distance by a, that stream if defined as: 
2

22 4~ rF Πσ  (6) 

12 arr =  (7) 
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which confirms the interdependence: 

23
1~
r

F D  (9) 

  
In the 2D case force “distributes itself” on the circumference of the circle, which defines 

the stream as: 

11 2~ rF Πσ  (10) 
After multiplying the distance by a:  

22 2~ rF Πσ  (11) 

12 arr =  (12) 
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=  (13) 

therefore in the 2D case   

r
F D

1~2  (14) 

  
In the 1D case the interaction spreads in a straight line, which means that force does not 

depend on distance.  
0

1 ~ rF D  (15) 
  

Distance integrating the forces we got, we receive the expected interdependences of 
potential energy and distance, in the 1D, 2D and 3D cases. 

0
1 ~ rF D  (16) 

drrV D
0

1 ~ ∫  (17) 

rV D ~1  (18) 
  

r
F D

1~2  (19) 

∫ r
drV D ~2  (20) 

rV D ln~2  (21) 
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23
1~
r

F D  (22) 

∫ 23 ~
r
drV D  (23) 

r
V D

1
~3  (24) 

  
Summarizing, the model of  interactions that will be accurate and appropriate in this 

interaction should have the following interdependences: 
 

 ( )rF ( )rV  

1D r~0~ r   

2D 
r
1~  rln~  

3D 2

1~
r

 
r
1~  

 
  

2.1 Suggested model 
A network with an appropriate number of dimensions is built: in the 3D case it will be a 

cubic network, in 3D case a rectangular network, and in 1D case a sequence of masses in a 
line. Those masses are connected by springs along the co-ordinate axes and to the walls: 

 
Fig1. A model of the “vacuum” for the 1D, 2D and 3D models. 
 
Such arrangement for our future interactions shall be called a vacuum, and its basic 

energy – vacuum energy. Let’s state the distance between the walls as D, and the number of 
atoms on the axis as n. Additionally a few assumptions must be taken: 
� the boundary conditions cannot influence the results of the measurements, which 

means we assume that: 
∞→D  (25) 

� the distances between masses are minimal, which increases the accuracy of the results 
and the suitability of the model to the field description. It means that the number of 
masses is maximal 

∞→n  (26) 
and in the meantime the distance between them: 
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0
1
→

+n
D  (27) 

� all actions in such a model should be independent on the choice of directions (no 
direction should be preferred), which is, unfortunately, impossible to accomplish in 
such a model in reality. The idealised model assumes that each mass is connected with 
every other, which means that all directions are realized. But it is a situation 
impossible to realize in numerical simulation. 

� we give the springs a specific property assuming that their static length equals 0. It 
defines the force of  interactions of masses connected by springs: 

( )1221 xxkF −=↔  (28) 
and: 

( )2
1221 2

xxkV −=↔  (29) 

Assuming on this basis that we have a network with ,  and dimensions, with , 
 and  atoms respectively in each dimension. The static energy of the system: 

xD yD zD xn

yn zn

( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=
zyx n

D
nkE
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0 1
1

2 α α

α
α  (30) 

Finally we get the energy of the initial state (here: vacuum energy): 

∑
= +

=
zyx n

DkE
,,

2

0 12 α α

α  (31) 

  
2.2 Definition of the charge. 

In such “field” we have to place charges, which could interact. Therefore we choose two 
groups of masses. In one case we diminish the distances between these masses – let’s call it a 
positive charge. In the other we increase the distances, stretching the springs – and it will be 
our negative charge. A few questions arise that we will be trying to solve: 
� What do we mean by unlike charges with the same arithmetical value and opposite senses 

and is there some symmetry between them?  
� Is the value of charges dependent on the quantity of so transformed masses, or on the 

changes of springs’ length? 
� What shape should this deformation have? 
� Do we permit extreme network deformations (change in the order of masses) and how to 

prevent them? 
We will try to answer these questions in following studies, but first let’s give a careful 

consideration to the 1D model. 
 

3.1 Analytical solution of the 1D model 
It is possible to solve the 1D case basing only on theoretical studies, therefore I won’t 

quote here the results of computer simulations, in the meantime stating that they are wholly 
consistent with the results of theoretical studies. 

It must be said, that irrespective of the number of dimensions we can assume two general 
strategies of creating charges: 
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a. A charge created by changing the distance between masses is permanently 
connected to its place of origin, and cannot  shift inside the network. 

b. The deformation has the possibility to occupy the optimal place in space, the only 
limitation being the distance between masses. 

Both models produce different interdependences between energy and distance so we have to 
consider them separately. 
 
3.1.a Anchored model 

We choose two springs and we denote the distance between their centres as d. We stretch 
one by dx, and the other by dy (where a positive value of dx means contracting, and a negative 
value - stretching). The distance between walls is D. The length of springs before the creation 
of "charges" is s. The elastic coefficient is k. 

 
Fig2. A model of charges in 1D 
 
Let AF be the section on which we consider the situation, BC – first charge, DE – second 

charge. We calculate following values: 

s
sdDn

21
−−

=  - number of springs on AB   (32) 

s
sdn −

=2  - number of springs on CD  (33) 

s
sdDn

23
−−

=  - number of springs on EF  (34) 

22
dxsdDAB +

−−
=  (35) 

22
dydxsdCD ++−=  (36) 

22
dysdDEF +

−−
=  (37) 

  
Energy equals then:  
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After inserting the interdependence (1-6) and subtracting the vacuum energy we get:  

dx dx dy dy
d
D
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sd
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If we assume additionally that the positive charge has the same value as the negative 
charge,  we stretch one spring equally as we contract the other one: 

dx=-dy (40) 
and we ignore the boundary conditions 

∞→D  (41) 
then the last element of the equation disappears and we get:  

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
++=−

sdD
dydxsdydxkEE

22

22
22

0  (42) 

where:  

( ) 0
2

22

→
−−

+
sdD

dydxs  (43) 

22
0 2

dydxkEE +=−  (44) 

which makes energy independent on distance:  
0~ rEseen  (45) 

 
However, if we ignore the condition of equality of charges, and leave the space 

infinite: 
 

-dydx ≠  (46) 
∞→D  (47) 

Thus we get:  

( ) 0
2

22

→
−−

+
sdD

dydxs  (48) 
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0  (49) 

what produces the interdependence:  

r
Eseen

1~  (50) 

  
3.1.b Unanchored model  

Let’s study an unanchored model. The only assumption we make is the distance between 
the atoms inside the charge. All designations are like in the previous case. To find the state of 
equilibrium, we search for the a, b, c minimum of the sum: 

( ) ( ) ( ) ( ) ( )( )22

2
dysdxskcEbEaE −+−+++  (51) 

where:  
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Therefore we search for the minimal value of the expression:  
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true to the condition:  
α=++ zyx  (56) 

Therefore we study the function:  
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and calculate the x, y, z derivatives, comparing them to 0. We get a set of equations:  
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Its solution is the sought minimum.  
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Because:  
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the arrangement reaches the energetical minimum, when  
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 Finally we get:  

( )
⎟⎟
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⎛
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−
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=−= 22
2

0 22
dydx

sD
dydxkEEEseen  (64) 

That interdependence implies that the energy is independent on d – it is constant.  
  

4.1 2D model – a sketch of the algorithm  
Let’s proceed now to the 2D model. In this case the analytical methods are not so 

efficient anymore, therefore we have to build a model basing on computer simulation. 

First we spread the masses equally. The forces acting on the atom located on  from 
4 neighbouring masses can be defined as: 

( jix ,
→

)

( ) ( ) ( )jixjixkjiF ,1,1,
→→→

−±±=  (65) 

The movement of such a model can be described by the following equations  

m
px =

•

 (66) 

x
Vp
∂
∂

−=
•

 (67) 

Choosing an appropriately small t∆  we can state:  

( ) ( ) t
m

jipjix ∆=+
,,  (68) 

( ) ( ) tjiFjip ∆=+ ,,  (69) 
For the whole arrangement to descend to the state of equilibrium we have to introduce 

dumping, by constant diminishing the momentum by a given percent. 
To the whole arrangement we can introduce charges in two ways: 
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- firstly stating the distance between atoms – then the arrangement begins to oscillate 
strongly, and after some time descends to the state of equilibrium 

- creating charges one by one, giving the network the possibility to adjust itself to the 
current situation – the oscillations don’t really exist, the arrangement very quickly reaches the 
energetic minimum. 

Thus we get the algorithm that simulates the behaviour of the network and allows energy 
measurements. 
 
4.2 Reaching the interdependence between energy and distance in 2D model 

The first conclusion 
we reach during the 
simulation is the negation 
of the known assumption 
about the independency on 
the choice of directions. It 
turns out that the choice of 
the location of the charges 
in the network influences 
the final behaviour of the 
model. Chart 1. shows 
energy as a function of 
distance  in 3 cases: 

 a – the charges are 
located on a line parallel 
to the directions of the 
network 

b - the charges are 
located at an 45o angle to  
the directions of the 
network 

c – the charges are 
located as in  a , but with 
no symmetry to the edges 
of the network 
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Chart 1. Measurements of the 2D model 

The interdependence c shows that the edges of the network also have a noticeable 
influence on the results. 

It must be noted, that expanding the network doesn’t have sense because of computation 
capacities. That poses a question whether the numerical method is efficient enough, 
and is applicable to the 3D model. 

It is quite difficult to summarize the results of the study, but we may assume that 
the mean curve can be approximated as a parabole, what implies the 
interdependence: 

xE D ~2  (70) 

Of course it is a so-called anchored model. 
 
5.1 Hitherto results  
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Let’s compare now the interdependences between energy and distance with those assumed 
at the beginning and expected as a check of the model’s appropriateness to describe an 
electrostatic field. 

 Received in the model 
 

Expected 
Anchored unanchored 

1D 
r

r 1~~ 0∨ 0  r~ ~ r  

2D r~ rln~  ?? 

3D 
r
1~  ?? ?? 

 
A serious obstacle in studying the 3D model is a need to find such an algorithm, which 

will render possible a fast calculation of the network movements with a big amount of atoms. 
A calculation of a 3D model with 200x200x200 atoms will take 200x200 200 times more 
time, comparing to the 2D model (about 40-50s x 200 = 130-170 min on a 1GHz processor). 
It must also be said, that in such dimensions – of several hundred atoms – the influence of 
boundary conditions is too big to be ignored. Expanding the network 4 times means 64 times 
more calculation time, what is an overwhelming barrier to an average PC. 

Calculating the distance derivatives of energy: 
 )(rV )(rF  

1D 
r

r 1~~ 0∨ 2

1~1~
rr

  

2D r~  r
1~  

 

 

  

D
r

D
r

D r
rr 3

0???
21

11
⎯⎯⎯ →⎯⎯→⎯ ⋅⋅  

or: 
(71) 

D
rr

D
rr

D r
rr 3

???
212

11
⎯⎯⎯ →⎯⎯⎯→⎯ ⋅⋅  (72) 

Integrating our hypothetical interdependences:  
rV D ~3  (73) 

or:  
2

3 ~ rV D  (74) 

Once more putting the received and expected interdependences together:  
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)(rE  expected received 

1D r~  
r

r ~~ ∨
10  

2D r~ rln~  

3D 
r
1~ 2~~ rr ∨  
 

 
5.2 Summary  

Some model has been built, on which we imposed the suspicion that is appropriate for 
describing the Coulomb field. The results we received on this stage show a discord with what 
we had expected, but it is not absolutely sure that it is inappropriate. The final test would be 
the study of a 3D arrangement with the following assumptions: 

a) the boundary conditions are ignored 
b) no directions are preferred 

One of the most interesting conclusions 
of the simulation is a surprising similarity 
between the network arrangement and the 
visualization of field force lines for the 
Coulomb interactions (pic. 1). It is one of 
the reasons to continue the work on the 
model.  

Finally we have to indicate the direction 
of future works on the subject: 

1. a new, efficient algorithm 
2. a new method of creating charges 

(adding and subtracting masses in 
the network) 

 
Pic 1. Model of electrostatic field 

3. more accurate definition of the charge 
4. addition of springs connecting the masses with the background 
5. placing additional springs at least with the closest neighbouring masses 
6. gaining freedom from edges (a change of independent length to a non-zero value and 

giving the network an ability of a free movement) 
Treating the electrostatic interaction in this quite simple (as we assume) classically- 

mechanical way seems interesting and still very promising mostly because of its untypical 
assumptions and its attempt to use one branch of science to describe another. A question 
whether it is possible to model an electrostatic interaction by an arrangement of springs, 
remains unanswered. 
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